

Institute _____ Energy and Mechanical engineering _____

Department <u>Mechanical engineering</u>

EDUCATIONAL PROGRAM

<u>6B07105-</u><u>Industrial engineering</u> the name of educational program

Code and name field of education: 6B07-Engineering, manufacturing and civil engineering Code and classification direction of personnel training: 6B071-Engineering and engineering trades Group of educational programs: B064-Mechanics and metal working EP purpose: 6 EP type: 6 Period of study: 4 years Volume of the credits: 240

Almaty 2024

Educational program <u>6B07105 - Industrial engineering</u>

(the name of educational program)

was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes <u>12</u> dated « <u>22</u> » <u>04</u> 20<u>24</u>.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes <u>6</u> dated «<u>19</u> » <u>04</u> 2024.

Educational program _ 6B07105- Industrial engineering

(the name of educational program)

developed by Academic committee in the direction of "6B071-Engineering and engineering"

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of Ac	ademic Committee:			
Nugman E.Z.	Doctor PhD	Head of the Department of "Mechanical Engineering"	NAO KazNRTU named after K.I. Satpayev, Institute of Energy and Mechanical Engineering	Hef.
Teaching staff:			1	
Uderbayeva A.E.	Doctor PhD	Assoc. Professor	Department of Mechanical Engineering	tof
Employers:			0 0	
Dyusebaev I.M.	Doctor PhD	Chief Engineer	Almaty plant "Electroshield"	Acuel-
Students				
Baybatsha A.	-	1st year doctoral student	Department of "Mechanical Engineering"	Bth

Table of contents

	List of abbreviations and designati	4
1	Description of educational program	5
2	The purpose and objectives of educational program	7
3	Requirements for evaluating the learning outcomes of an	
	educational program	7
4	Catalog of disciplines	7
4.1	General information	7
4.2	The relationship between the achievability of the formed learning	
	outcomes according to the educational program and academic	
	disciplines	10
5	Curriculum of the educational program	19

List of abbreviations and designate

ECTS	European Credit Transfer and Accumulation System
BD	Basic disciplines
HEI	Higher education institution
SMSE	State mandatory standard of education
KazNRTU	K. I. Satpayev Kazakh National Research Technical University
MEP	Modular educational program
NJSC	Non-profit joint stock Company
GED	General education disciplines
EP	Educational program
PD	Profile disciplines
WC	Working curriculum
IWS	Independent work of a student
EMC	Educational and Methodological Council
AC	Academic council

1 Description of educational program

A specialist who develops a virtual prototype of products and technological processes (for example, for remote consulting of personnel, visual demonstration of the product to the customer at the design stage).

The professional activity of graduates of the program is directed to the field of mechanical engineering, additive manufacturing.

The direction of the specialty and specialization program covers engineering and engineering.

The field of professional activity of bachelors includes sections of science and technology containing a set of tools, techniques, methods and methods of human activity aimed at creating competitive engineering products and based on the use of modern methods and means of design, mathematical, physical and computer modeling of technological processes.

Bachelors can perform the following types of professional activities:

- organizational and managerial;

-production and technological;

- design and engineering;

- settlement and design;

- experimental research.

Functions of professional activity of graduates:

- development and design of technological processes for the manufacture of various types of products, equipment, tooling, tools;

- standard control of regulatory and technical documentation;

- solving design, technological, organizational-technical and organizational-economic tasks;

- - maintenance, organization of preventive inspections and routine repairs of production facilities, measurements, tests and control;

- development of design, technological and operational documentation, new technologies, methods of testing equipment and tooling for specific industries;

- analysis of the state of production and assessment of the stability of product quality in order to further develop and improve the efficiency of the enterprise;

- conducting experiments, measurements, observations, implementation of research results and scientific developments.

Graduates are prepared to solve the following types of tasks according to the type of professional activity:

- organizational and managerial: organization of the production process, organization of the work of performers;

- setting goals and forming management tasks related to the implementation of professional functions;

-organization of production maintenance management of the production process taking into account technical, financial and human factors;

-development of management algorithms;

-accounting planning and reporting, development of a business plan of the enterprise, planning to improve production efficiency;

-production and technological: development, implementation and operation of system, resource-saving technologies; development and implementation of technological processes for processing and assembling products;

-automation of machine-building production; creation of continuous in-line production processes, automated complexes, flexible automated productions;

-introduction of highly efficient technological equipment, ensuring environmental friendliness of machine-building production;

- design and engineering: execution of design and graphic works in the design of automation systems, design of highly efficient technological equipment; justification of criteria for evaluating the technical and economic efficiency of the designed systems;

-development of design, design and technological documentation using modern methods of computer-aided design;

- design and design: development of design schemes for the design of equipment systems, tooling and tools;

-execution of calculations for use in design documentation; justification of calculation methods;

- experimental research:

Application of modern experimental methods for the study of processes occurring in machine-building production; research of new directions in the technology of modern mechanical engineering; research of types of processing in mechanical engineering; research of automation objects in the field of mechanical engineering; scientific substantiation of methods for ensuring the quality of manufactured products and increasing labor productivity; Areas of professional activity

Areas of professional activity

Directions of professional activity of a graduate of this specialty:

- technological processes of machine-building production;

- design and construction of various types of equipment, tooling and tools;

- repair and maintenance of production equipment, tooling and tools;

- experimental research works. The content of professional activity.

The content of professional activity includes a set of means, methods and methods of production and technological, design, experimental research, organizational, economic and managerial activities, as well as design and design activities aimed at manufacturing competitive engineering products based on the use of modern design methods.

Requirements for the Bachelor's key competencies.

The bachelor must:

have an idea: about the main equipment, tools, equipment used in mechanical engineering; about calculation and design methods; about modern methods and methods of obtaining blanks; about the development of technological processes; about the current state, trends and prospects for the development of mechanical engineering; about the types of CAD support; about the composition of design tasks; about the sanitary and hygienic basics of labor protection; about the main hazards and harmful conditions; ways of preventing and eliminating accidents; about fixed assets and working capital; about economic efficiency; about modern

forms and methods of organization and management of production;

2 The purpose and objectives of additional educational program

EP purpose:

The purpose of the educational program is the professional training of a graduate in the field of design, design and organization of machine-building production, the formation of a technically competent, socially responsible personality; possessing creative thinking, the ability to solve engineering problems, work in a team and having management competencies in the industrial sector.

EP tasks:

- formation of knowledge of modern information technologies;

- acquisition of theoretical and practical knowledge of computer-aided design of machine-building products;

- knowledge of methods and methods of mathematical and 3D modeling;

- acquisition of professional competencies in accordance with the requirements of industry professional standards;

- acquisition of knowledge of the basics of mechanical engineering technology, design of technological processes for the production of machines;

- formation of knowledge about the main trends in the development of mechanical engineering, the introduction of innovative digital technologies.

3 Requirements for evaluating the learning outcomes of an educational program

Description of mandatory standard requirements for graduating from a university and conferring an academic bachelor's degree: mastering at least 240 academic credits of theoretical training and final thesis

4 Passport of the educational program

№	Название поля	Примечание
1	Code and name field of education	6B07- Engineering, manufacturing and
		civil engineering
2	Code and classification direction of personnel	6B071- Engineering and engineering
	training	trades
3	Group of educational programs	B064- Mechanics and metal working
4	Name of the educational program	6B07105-Industrial engineering
5	Short description of the educational program	The professional activity of graduates
		of the program is directed to the field of
		mechanical engineering, additive
		manufacturing. In the educational
		program, students will receive
		professional knowledge of the basics of
		mechanical engineering technology,

4.1 General information

	machining technology and machine
	assembly They will acquire skills in
	designing machine structures and their
	narts technological processes of
	mashina maduation using madam
	machine production using modern
	software products (CAD/CAM/CAE).
6 EP purpose	Preparation of demanded, competitive
	and highly qualified bachelors in
	mechanical engineering; design,
	production and operation of machines
	aimed at their high quality and safety,
	high economic efficiency for the
	manufacturer and consumer
7 EP type	New
8 Level on NOF	6
9 Level on SOF	6
10ED distinctive features	0
10EP distinctive features	
I I List of competencies of the educational p	program: - Ability to apply general engineering
	knowledge, methods of mathematical
	anarysis and modering in professional
	Ability to analyze and evaluate both
	- Ability to analyze and evaluate both
	Willingness to use modern information
	- winningness to use modeling of
	technologies in the modeling of
	angineering:
	Willingness to apply modern calculation
	- winnigness to apply modelli calculation
	assemblies of mechanical angineering
	assemblies of mechanical engineering
	Willingness to use low waster innovative
	- winnigness to use tow-waste, innovative,
	engineering:
	Willingness to apply methods of quality
	control of products and objects in the field
	of professional activity:
121 corning outcomes of the educational pr	ogram: ON1 Apply basic knowledge of
12 Learning outcomes of the educational pr	fundamental disciplines of mathematics
	physics chemistry digital technologies in
	the design and preparation of machine-
	building production
	ON_2 Apply knowledge of economic laws
	occupational safety and health ecology
	rules of moral development culture of
	academic integrity at a professional level
	ON3- Analyze synthesize and design
	elements of machine structures using
	modern materials and methods for
	calculating structures for strength rigidity
	and stability
	ON4- To carry out technical preparation of
	production to evaluate the quality of
	production, to evaluate the quarty of
	products
	products.

	 ON5- Develop technical and technological documentation for the design and production of metalworking equipment, tooling and cutting tools. ON6-Apply the principles of interchangeability and rationing of standard connections in machines. ON7- Apply modern engineering materials, technologies and methods of design and production of blanks in mechanical engineering. ON8- Choose effective ways to implement the main technological processes and apply methods of processing machine parts based on additive technologies, automated design systems and production management. ON9- Use process modeling methods, software products and the latest technologies to solve engineering problems in the field of metalworking. ON10- Analyze and apply modern methods of economic regulation and production management, planning and organization of production. ON11- To use the laws of fluid and gas mechanics in the design and operation of technological equipment in the manufacture of machine-building products. ON12- The use of modern technical means and information technologies of machine-building production, advanced equipment, tooling and additive technologies.
13Form of training	daytime
14Period of study	4 years
15 Volume of the credits	240
16Language of education	Kazakh, russian
17 The awarded academic degree	Bachelor of Engineering and
	technology
18Developer(s) and authors:	The educational program was developed by the academic committee in the direction "6B071-Engineering and Engineering"

4.2 The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

N	Name of discipline	Short description of discipline	Number	The formed educational outcomes (codes))	
	-		of credits	SON1	ON2	ON3	ON4)N5C	N6(ON7	DN8	ON9	ON10	ON11	ON12
		Cycle of general education discip	lines			1								1	
		Optional component													
1	Fundamentals of anti-corruption culture and law	The course introduces students to the improvement of socio-economic relations of Kazakhstan society, psychological features of corrupt behavior. Special attention is paid to the formation of an anti-corruption culture, legal responsibility for acts of corruption in various spheres. The purpose of studying the discipline «Fundamentals of anti-corruption culture and law» is to increase public and individual legal awareness and legal culture of students, as well as the formation of a knowledge system and a civic position on combating corruption as an antisocial phenomenon. Expected results: to realize the values of moral consciousness and follow moral norms in everyday practice; to work on improving the level of moral and legal culture; to use spiritual and moral mechanisms to prevent corruption.	5						v						
2	Fundamentals of economics and entrepreneurship	Discipline studies the foundations of percent corruption. Discipline studies the foundations of economics and entrepreneurial activity from the point of view of science and law; features, problematic aspects and development prospects; the theory and practice of entrepreneurship as a system of economic and organizational relations of business structures; The readiness of entrepreneurs for innovative susceptibility. The discipline reveals the content of entrepreneurial activity, the stages of career, qualities, competencies and responsibility of the entrepreneur, theoretical and practical business planning and economic examination of business ideas, as well as the analysis of the risks of innovative development, the introduction of new technologies and technological solutions	5					v							
3	Ecology and life safety	The discipline studies the tasks of ecology as a science, environmental terms, the laws of the functioning of natural systems and aspects of environmental safety in the conditions of labor activity. Monitoring of the environment and management in the field of its safety. Sources of pollution of atmospheric air, surface, groundwater, soil and ways to solve environmental problems; life safety in the technosphere; natural and man-made emergencies	5					V							
4	Fundamentals of scientific research methods	The purpose of the discipline is to form the skills of organizing and planning scientific research, methods of conducting experimental research, methods of information processing. The discipline introduces students to the goals, objectives and stages of scientific research. The terms and concepts, the methodology of the experiment, mathematical methods of processing research results are considered. The concept of engineering, laboratory and industrial experiment, bench research. The discipline introduces the basics of the theory of solving inventive problems, algorithmic methods of finding	5					v							v

5 Basics of Finance	te n o se cial Literacy P d C n c ta ta	echnical solutions and their optimization. Highlights the main mathematical nethods of optimization, the use of artificial intelligence capabilities to solve optimization problems; issues of search, accumulation and processing of cientific information. Purpose: formation of financial literacy of students on the basis of building a lirect link between the acquired knowledge and their practical application. Contents: using in practice all kinds of tools in the field of financial nanagement, saving and increasing savings, competent budget planning, obtaining practical skills in calculating, paying taxes and correctly filling ou ax reports, analyzing financial information, orienting in financial products	e a 5 t			v				
	μ	Cycle of basic disciplines								
		University component								
6 General Chemis	try T c q a a	he purpose of the discipline is to study the basic concepts and laws of hemistry; fundamental laws of chemical thermodynamics and kinetics juantum mechanical theory of atomic structure and chemical bond. Solution and their types, redox processes, coordination compounds: formation, stability and properties. The structure of matter and the chemistry of the elements.	f 4 s; s y	v						
7 Physics I	C n o r o c e	Dbjectives: to study the basic physical phenomena and laws of classical nodern physics; methods of physical research; the relationship of physics with other sciences. The following topics are considered: mechanics, dynamics of otational motion of a solid body, mechanical harmonic waves, fundamental of molecular kinetic theory and thermodynamics, transport phenomena continuum mechanics, electrostatics, direct current, magnetic field, Maxwe equations.	l, 5 h f s l,	v						
8 Mathematics I	T a p ft ft b iu t t	The course is based on the study of mathematical analysis in a volume that llows you to study elementary functions and solve the simplest geometric hysical and other applied problems. The main focus is on differential and ntegral calculus. The course sections include the differential calculus of unctions of one variable, the derivative and differentials, the study of the behavior of functions, complex numbers, and polynomials. Indefinit ntegrals, their properties and methods of calculation. Certain integrals an heir applications. Improper integrals.	tt 5 s, d e e d	v						
9 Physics II	T P e: s: re c d d d	The course studies the laws of physics and their practical application is professional activity. Solving theoretical and experimental-practical ducational problems of physics for the formation of the foundations is olving professional problems. Assessment of the degree of accuracy of the esults of experimental or theoretical research methods, modeling of physical condition using a computer, study of modern measuring equipmen levelopment of skills for conducting test studies and processing their results distribution of the physical content of applied tasks of the future specialty.	n 5 d n e d d s,	v				v		
10 Mathematics II	T e a li	The discipline is a continuation of Mathematics 1. The course sections includ elements of linear algebra and analytical geometry. The main issues of linear elgebra are considered: linear and self-adjoint operators, quadratic forms inear programming. Differential calculus of a function of several variable	e 5 r s, s	v				v		

		and its applications. Multiple integrals. The theory of determinants and										
		matrices, linear systems of equations, as well as elements of vector algebra.										
		The elements of analytical geometry on the plane and in space are included.										
11		General provisions of the methodology of engineering design. Stages of	5	v								
		creating cars. Design procedures. Principles of engineering design.										
	Introduction to engineering design	Engineering design methods. Manufacturability of machine designs.										
12	The theoretical mechanics	Statics: reactions of communications; the theory of the moments; conditions	5			v		v				
		of balance of flat and spatial systems of forces; the centre of grav-ity of a body.										
		Kinematics: kinematics of a point; the elementary movements of a firm body;										
		plane-parallel movement of a firm body; free movement of a firm body;										
		complex movement of a point and a firm body. Dynamics: dynamics of a										
		material point in inertial and not inertial systems of readout; mechanical										
		system and its characteristics; the general theorems of dynam-ics of a material										
		point and system; analytical dynamics; the theory of impact.										
13	Strength of materials	Stretching and compression. Stresses in cross sections and deformations of a	5			v			v			
		straight rod. Mechanical properties of materials under tension and										
		compression. Calculation of strength and stiffness in tension-compression.										
		Geometric characteristics of flat sections. Shear and torsion. Calculation of										
		strength and torsional stiffness. Bend. Normal and tangential bending stresses.										
		Calculation of bending strength. Theory of stressed and deformed states. The										
		limit state hypothesis. Complex resistance. Stability of the equilibrium of										
		deformable systems. Dynamic load.										
14	Electrical and Electronic	The purpose of the discipline is to acquire theoretical and practical knowledge	5							v		v
	Engineering	on the basics of electrical engineering and electronics. The basic laws of the										
		processes occurring in electromagnetic and electronic circuits and methods for										
		determining the electrical quantities characterizing these processes are										
		studied. Methods of calculation of DC electric circuits are studied; analysis										
		and calculation of linear AC circuits; analysis and calculation of magnetic										
		circuits. Electromagnetic devices and electrical machines. Fundamentals of										
		electronics and electrical measurements. The element base of modern										
		electronic devices. Fundamentals of digital and microelectronics,										
		microprocessor tools.										
15	The theory of mechanisms and	The purpose of studying the discipline is to form the scientific foundations of	5			v		v				
	machines	students' knowledge of general methods of research and design of mechanisms										
		of machines and devices, to prepare a scientific and theoretical basis for the										
		development of special disciplines and the basics of modern technology										
		Contents: Introduction. The basic concepts of the theory of mechanisms and										
		machines. The main types of mechanisms. Structural analysis and synthesis of										
		mechanisms. Synthesis of mechanisms with lower pairs. Kinematic analysis										
		of mechanisms. Dynamics. Basic concepts. Kinetostatic (force) analysis of										
		mechanisms. Dynamic analysis of mechanisms. Introduction to the theory of		1								
		the highest kinematic pair. Mechanisms with higher kinematic pairs. Analysis		1								
		and synthesis of gear mechanisms. Analysis and synthesis of cam		1								
1												
		mechanisms. Vibrations and vibrations in machines and mechanisms										
16	Economics of a machine-building	mechanisms. Vibrations and vibrations in machines and mechanisms The purpose of the discipline is to acquire theoretical knowledge and practical	5		v						v	

	studies the structure of a machine-building enterprise, fixed and current assets, production capacity of the enterprise, material and technical support of production, personnel, financial resources of production. The issues of forecasting and planning of production, calculation of production costs, production costs, economic efficiency, analysis and evaluation of the economic activity of the enterprise are studied.										
17 Qualimetry in mechanica engineering	al The purpose of the discipline is to acquire the theoretical foundations of qualimetry and practical knowledge of quality analysis, organization of statistical quality control of engineering products. The regulatory framework of the technology for assessing the quality level, quality control methods are being studied. The nomenclature of product quality indicators, expert methods of quality assessment are considered. The skills of quality analysis, application of various assessment methods, organization of work in the field of quality assessment are acquired	5	V		v						
18 Basics of interchangeability	The purpose of the discipline is to acquire knowledge and practical skills on the basics of interchangeability, technical measurements, and machine manufacturing accuracy. Students acquire knowledge on accuracy of manufacturing of machines. The basic con-cepts of interchangeability. Concepts about the sizes, maximum deviations, admissions and landings. Principles of construction of system of admissions and landings. Calcu-lation and a choice of landings. Normaliza-tion, methods and means of measurements and the control of rejections of the form, an arrangement, a roughness and a sinuosity of a surface of a detail. Methods and means of measurements and the control of smooth cylindrical connections; carving connec-tions; conic connections and tooth gearings. Substantive provisions of the theory and practice of calculation of dimensional cir-cuits.	5					v				
19 Probabilistic models in industri- engineering	al The purpose of the discipline is to acquire theoretical and practical knowledge of the reliability of technical systems (machines). The fundamentals of probability theory and the application of the laws of probability theory to the analysis of technological and technical systems, including in mechanical engineering, in procurement production, are studied. With the help of probabilistic and statistical models, the problems of designing, manufacturing and controlling products are solved. The use of such models in the calculations and research of the accuracy of equipment and technological processes, in the development and selection of statistical methods for quality control of machine-building products.	5	v						v		
20 Construction materials and here treatments	at The purpose of the discipline is to provide theoretical and practical knowledge of the basic properties of structural materials used in mechanical engineering, methods of their heat treatment. The discipline considers: classification of engineering materials, properties and characteristics of materials, methods of studying the structure and composition of materials, the diagram of iron- cementite. The production of cast iron and steel, non-ferrous metal alloys is being studied. The types of heat treatment, modes and recommendations for their use are considered; promising engineering materials.	5		V				v			
21 Metalworking machines	At the study of this discipline students will get general information on the basic types of industrial equipment for making of de-tails, and also taking	5				v					v

	about bases of plan-ning and exploitation of these types of eq-uipment. Students will know the device of machines, machine-tools and automats. Will master approach of the systems at an analy-sis and synthesis of objects of metal-cutting equipment and will get abilities of kinemat-ics analysis, формообразования etc. Metal-cutting machine-tools. Machine-tools for treatment of bodies of rotation. Machine-tools for treatment of openings. Machine-tools for treatment of prismatic details. Machine-tools for abrasive treat-ment. Metal-cutting machine-tools with CHPU.									
22 Cutting theory	The purpose of the discipline is the formation of knowledge on the basics of the theory of metal cutting, practical skills in calculating cutting modes, choosing a model of equipment. Basic concepts and definitions of cutting theory. The physical basis of the theory of cutting. Performance and failure of blade cutting tools. The peculiarity of various methods of machining. Lubricating technology media. Machinability of various materials. The method of increasing the reliability of the right choice of tool material. Heat phenomena during cutting. The theory of abrasive processing. Calculation of cutting modes. Physico-chemical processing methods. Features of the cutting process and cutting conditions in automated production.	5					V			v
23 Computer-aided engineering system	s The purpose of the discipline is to form theoretical and practical knowledge of the principles of building computer-aided design systems (CAD- Computer aided design), their classification, methods for formalizing the design and construction process, methods of using information technologies to automate design and engineering work. The structure and principles of the organization of the computer-aided design process, composite components and software tools of CAD systems are studied. Operation of geometric modeling methods, computer analysis of built models.	5						v		v
24 Bases of designing and details of car	sPurpose: to acquire knowledge of calculations and design of machine parts and assemblies, taking into account the criteria of strength, reliability and stability.Contents_general principles of design and construction, construction of models and calculation algorithms for standard machine parts taking into account performance criteria, fundamentals of theory and methodology for calculating standard machine parts, computer technologies for designing assemblies and machine parts. Basic requirements for machine parts and assemblies_	5		v		v				
25 Automation of process design an calculation	d The purpose of this discipline is to acquaint students with the automation of technological design and production preparation, the creation of control programs for CNC machines, the principles of development of such programs and the role of Postprocessors. The objectives are the study of the following aspects: practical training in working with CAM systems, assignment of technological operations and tools for the manufacture of products in the CAM system, modeling the processing of products and checking the correctness of written control programs both in the CAM system and on the CNC machine control rack.	5						v		v
26 Mechanics of liquid and gas	The course "Mechanics of liquid and gas" examines the models and physical properties of liquids and gases; the forces acting in the fluid, hydrostatic pressure and its properties; basic equations and laws of equilibrium and	5							v	

				гт		- T	r r		-		1		
		motion of liquids and gases; flow regimes and methods for calculating applied problems											
27	7 Occupational health and industrial safety (by industry)	Purpose: formation of knowledge, skills and abilities of students on the occupational health and safety management system at enterprises, taking into account industry specifics. Contents: regulatory and legal framework for occupational safety; harmful production factors; accidents and occupational diseases at work; industrial sanitation and occupational health; regulatory and technical regulation in the field of industrial safety; measures to protect employees at the enterprise	5			v							
		Cycle of basic disciplines											
	Optional component												
2	8Hydraulics and hydraulic pneumatic drive	The purpose of the discipline is the formation of knowledge in the field of hydraulics, hydraulic and pneumatic machines for processing, feeding and moving liquids and gases. The discipline deals with the issues of hydrostatics: basic physical properties of liquids and gases; hydrodynamics: motion of liquids and gases, Euler and Bernoulli equations, modeling of hydrodynamic phenomena; hydraulic machines and hydraulic drives. Fundamentals of pneumatic actuators, pneumatic motors, equipment of pneumatic systems. The basics of operation of combined hydraulic pneumatic actuators are studied.	5									v	
2	929Fundamentals of sustainable development and ESG projects in Kazakhstan	Purpose: the goal is for students to master the theoretical foundations and practical skills in the field of sustainable development and ESG, as well as to develop an understanding of the role of these aspects in the modern economic and social development of Kazakhstan. Contents: introduces the principles of sustainable development and the implementation of ESG practices in Kazakhstan, includes the study of national and international standards, analysis of successful ESG projects and strategies for their implementation in enterprises and organizations.	5		v								
3	030Calculation and design of cutting tools	This discipline must teach students correct-ly to construct and rationally exploit mod-ern metal-cutting instruments. To teach stu-dents correctly to design, and also gro-unded to choose from a set of standard, necessary metal-cutting instruments, com-ing from the set requirements to quality of details and terms of their treatment. Inst-rumental materials. Instruments for treatment of openings. Abrasive instruments. Instruments for formation of screw-thread. Instruments for treatment of not эволь-вентных types.	5				v			r			
3	1 Fundamentals of Artificial Intelligence	Purpose: to familiarize students with the basic concepts, methods and technologies in the field of artificial intelligence: machine learning, computer vision, natural language processing, etc. Contents: general definition of artificial intelligence, intelligent agents, information retrieval and state space exploration, logical agents, architecture of artificial intelligence systems, expert systems, observational learning, statistical learning methods, probabilistic processing of linguistic information, semantic models, natural language processing systems.	5		v								
		Cycle of profile disciplines											

	University component								
32 Technology of production of machines	The purpose of the discipline is to acquire theoretical and practical knowledge of the methodology of designing technological processes for the production of machines. The discipline studies the basics of mechanical engineering technology, the theory of basing workpieces during processing, the theory and calculation of allowances, processing modes, rationing of the technological process of assembling machines. Typical technological processes of manufacturing machine parts, assembly of assemblies and machines; quality control methods are studied.	5		v		v			
33Processes of machine-building production	The purpose of the discipline is to acquire knowledge of technological methods for obtaining and processing blanks and machine parts. The discipline studies the general characteristics of metals and alloys used in mechanical engineering, the technological foundations of metallurgical production, the technology of metal processing by pressure, the technology of foundry production, the technology of welding production. The technology of production of blanks and machine parts from non-metallic materials is considered; features of welding of various metals and alloys.	5		v	V				v
34Statistical methods in industrial engineering	The concept of selective statistical research. General and selective set. Absolute and relative statistics. Definition of an index as a statistical indicator. Economic substantiation of scales. Laspeyres and Paasche indices. Interrelation of indices. Justification of the choice of weights in territorial indices. Tasks and system of indicators of price statistics. Consumer price indices and producer prices. Statistics of production costs. Grouping the cost of production by economic elements and costing items.	5		v		v			
35Robotization of machine-building production	The purpose of the discipline is to prepare a future specialist for design and technological activities in the conditions of production automation based on industrial robots. The basics of automation and robotization of mechanical engineering, the structure and technological capabilities of robots are studied. Classification of robots, principles of operation of gripping devices, features of robots used in machine assembly operations. The main technical parameters of robots, cyclograms of work in flexible production models.	6				v	v		
36Design of machining on CNC machines	The purpose of the discipline is theoretical and practical knowledge on the design of technological processes for processing workpieces on CNC machines. The discipline studies the issues of classification, the structure of CNC machines, the development of control programs. Design of processing technology on turning, grinding, milling, combined CNC machines. Features of designing technological processes in the conditions of flexible automated production, programming automation systems.	5		v			v		
37 Organization and planning of machine-building production	The purpose of the discipline is the formation of practical skills in the design of production sites and workshops. The main stages of designing mechanical assembly shops with calculation of the main technological and production parameters, classification of mechanical shops and their composition, lifting and transport equipment of the shop and warehousing are considered. The structure of workshops, the layout of the main and auxiliary production sites.	6					v	v	

		Calculations of the quantity and productivity of equipment, the capacity of production and technological equipment.								
		Cycle of profile disciplines								
		Optional component	1	1 1	 1				1	
3	7 Innovative technologies in mechanical engineering	The purpose of the discipline is to acquire theoretical and practical knowledge and skills in the field of innovative technologies in mechanical engineering technological processes of repair and restoration of worn parts and machine components. The discipline examines innovative technologies in mechanica engineering, including modern methods of obtaining blanks by casting pressure treatment, powder metallurgy and cutting, processing methods designs of metal-cutting machines, tools for the manufacture of complex parts methodological foundations for the construction of modern technologica processes of mechanical processing and assembly of machine-building products.	5					v		v
38	8 Additive Manufacturing	The purpose of the discipline is to acquire theoretical and practical knowledge and skills in the field of innovative technologies in mechanical engineering technological processes of repair and restoration of worn parts and machine components. The discipline examines innovative technologies in mechanica engineering, including modern methods of obtaining blanks by casting pressure treatment, powder metallurgy and cutting, processing methods designs of metal-cutting machines, tools for the manufacture of complex parts methodological foundations for the construction of modern technologica processes of mechanical processing and assembly of machine-building products.	5							V
39	9 Design and calculation of technological equipment	Students acquire theoretical knowledge and practical skills of designing of the industrial equipment applied at processing of details of cars. Role and value of industrial equip-ment in mechanical engineering develop-ment Classification of adaptations: on a special-purpose designation, a technological sign, specialisation and mechanisation de-gree. Basic elements of designs. Special ad-aptations. Designing and calculation of ad-aptations Calculation and a choice of drives for adaptations.	5		v		v			
4(0 Progressive methods of surface treatment	The purpose of the discipline is to acquire knowledge of modern methods or surface treatment of workpieces in machine-building production. The discipline considers technologies of procurement production - laser and waterjet cutting of metal; new structural materials - processing of metal- carbon fiber packages. Electrophysical and electrochemical methods o surface treatment of workpieces. Innovative technologies are considered additive manufacturing, manufacturing of parts on 3D printers. Finishing and strengthening methods of processing parts.	5				V			v
4	Theory and practice of project management	The purpose of mastering the discipline is to expand and deepen knowledge about modern project management technology and study the principles of using project management in practical tasks. Mastering the discipline involves an introduction to the problems of project management and the study of project management methodology, familiarization with the tools and methods of project management at all stages of the project life cycle, starting with	5		v		v		v	

	initialization project, planning its work, organizing their use and control, and ending with completion.								
42 Capstone Project	The purpose of the discipline is the formation of a complex of theoretical knowledge and practical skills in management, maintenance and support of technical preparation of production. Practical possibilities are considered and professional skills of students to work in a team are formed. Students solve real engineering and technical problems of production, formation and implementation of the life cycle of machine-building products based on the collection of information, critical assessment of the feasibility of the project, in-depth analysis and execution of the project report.	5					v	v	

5. Curriculum of the educational program

	Total based on UNIVERSITY:									31	29	32	28	30	30	32	28
AAP500	Military affairs	ATT	0						C						1	T	-
					M-1	1. Modul	le of additi	onal types	of trainin	ng							-
ECA109	Writing and defending a thesis (project)	FE	8	8	8												8
						M-10.	Module of	final attes	tation								
SM1418	Capstone Project						1/2/0		-					1			5
NG481	Theory and practice of project management	PD, CCH	5	5	3	150	2/0/1	105	Е								5
_				M	-9. M	anageme	nt training	module	(Elective	R&D)							
AP176	Industrial practice II	PD, UC	5		5										5		
AP408	Industrial practice I	PD, UC	3		3								3				
ISM431	Progressive methods of surface treatment	PD, CCH	5	5	3	150	1/2/0	105	E				1			-	5
ISM159	Design and calculation of technological equipment						1/0/2										
ISM192	Renovation technologies in Mechanical Engineering	PD, CCH	5	5	3	150	1/0/2	105	E								5
1						Eleci	tive discipli	nes of the	PD						-		
ISM457	Organization and planning of machine-building production	PD, UC	6	6	4	180	2/0/2	120	E							6	
ISM426	Design of machining on CNC machines	PD, UC	5	5	3	150	1/0/2	105	E							4	5
ISM430	Robotization of machine- building production	PD, UC	6	6	4	180	2/1/1	120	E							6	
SM114	Statistical methods in industrial engineering	PD, UC	5	5	3	150	1/1/1	105	E							5	
SM129	Technological processes of machine-building production	PD, UC	5	5	3	150	2/1/0	105	E						5		
SM176	Technology of mechanical engineering	PD, UC	5	5	3	150	1/0/2	105	E							5	
YD482	Labor protection and industrial	BD, UC	5	5	3	150	2/0/1	105	E							5	
			_	M-8	. Mod	ule of pr	oduction a	nd technol	ogical pr	enaration	_		_				-
YCLE	OF PROFILE DISCIPLINES (F	PD)		-							6		1	-	-		
AAP196	in Kazakhstan Training Practice	BD, UC	2	2	2			_		-	2	-		_	3		- 8
MNG563	Fundamentals of sustainable development and ESG projects	BD, CCH	5	5	3	150	2/0/1	105	E						5		
1SM149	Hydraulics and hydropneumatic drive						1/0/2						-	-		+476	
CSE831	Fundamentals of Artificial Intelligence	BD, CCH	5	5	3	150	1/0/2	105	E						5		
4SM150	Calculation and design of																

	Number of credits for the e	ntire po	eriod a	fstudy	Ý					
1.	Cycles of disciplines	Credits								
Cycle code		required component (RC)	university component (UC)	component of choice (CCH)	Total					
GED	Cycle of general education disciplines	51		5	56					
BD	Cycle of basic disciplines		111	10	121					
PD	Cycle of profile disciplines	1	40	15	55					
*	Total for theoretical training:	51	151	30	232					
FA	Final attestation	8			8					
	TOTAL:	59	151 3	30	240					

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol Nº ____ "____" 20 y, Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol Nt _or

Decision of the Academic Council of the Institute E&ME. Protocol Nº __0T 20

Board Member -Vice-Rector for Academic Affairs

E&ME Institute Director

ME Department Head

Specialty Council representative from employers

I. Dyusebaev

fil a

y.

R.Uskenbaeva

Kelemessov

E.Nugman